
Final Report, RepairIT Shop Repair Manager NativeScript App

1

Final Report, RepairIT Shop Repair Manager

NativeScript App

R. Brian Redd, May 30, 2018

Honors Assignment 3; Multiplatform Mobile App Development with Web Technologies,

Coursera; Instructor: Jogesh K. Muppala

Introduction

I’ve been contacted by a small shop that makes and repairs hand-

made one-of-a-kind puppets at Renaissance Festivals. They travel

around the country going to various shows, and need a way to manage

receipt of puppets to be repaired.

They have asked for an app that can sit on their employee’s phones

(both Android and iOS) that will allow them to take pictures of

puppets when they receive them, detail the necessary repairs

required, and attach the customer details so that when the repairs are

done, they know exactly who to return them to.

Because of often spotty internet connectivity at these festival sites,

the app must be able to function offline, and send the information

(either via email and/or upload to a server) when the device has

internet access.

Final Report, RepairIT Shop Repair Manager NativeScript App

2

Design and Implementation

Initialization of Application

While initially built for a single specific custom, the app is designed to be able to be used by any

company with similar needs.

When initially fired, the app will prompt the user for a company ID and password. When entered, the

app will make a call to a JSON-server to validate information and prompt the user to verify.

Final Report, RepairIT Shop Repair Manager NativeScript App

3

Then the associate will be asked to enter in their name, with an optional password (see Upcoming

Features below). From the first and last name, an Associate ID will be generated, and this value will be

used in the generated, incremental Order ID.

Once entered, the user will be taken to the main screen; this will be the primary screen the app will

open to once a user has been stored.

Company details will be grabbed from the JSON-server and stored, for the most part, in application

settings, as will the associate information. Additional object- and array-based details will be stored in a

Couchbase Lite database.

Final Report, RepairIT Shop Repair Manager NativeScript App

4

The main screen has four primary buttons along with two secondary buttons: New Repair Orders,

Pending Orders, Active Orders, Completed Orders, Settings, and Information. When the associate

initializes the app, only the New Repair Orders primary button will be display (as there will be no

pending, active, or archived orders).

NOTE: Branding such as logo and color scheme are included in the JSON-server company details, and will

be stored locally once the app is initialized.

Final Report, RepairIT Shop Repair Manager NativeScript App

5

New Order Entry

Tapping the New Repair Order button will take you to the new order page. This page is based on a form

and includes four “tabs”. Movement between tabs is available via Next and Previous buttons as well as

by left and right swiping.

Final Report, RepairIT Shop Repair Manager NativeScript App

6

The first tab is for Customer Information. This includes verification of valid email and phone number (the

latter strips out unnecessary, non-numeric characters.

The second tab is for Product Information specific to the repairs, including the type of repair, details

about the repair, and photos of the object to be repaired.

The third tab details the shop location (used to differentiate various renaissance festivals or venues), the

location of the repair (will it be performed on-site same day, on-side different day, or will it need to be

shipped offsite), costs of repairs and shipping, whether or not those fees have been paid, and estimated

time or date of repair completion.

Final Report, RepairIT Shop Repair Manager NativeScript App

7

The final tab is for a free-form note field.

There is a modal in place for various fields, such as State, Type of Repair, Location of Repair, Time of

estimated repair completion (if repair is to be done on-site same day), or Date of estimated repair.

The list of Types of Repairs are included in the company JSON-server capture, so they can be customized

per company. In addition, any type of repair with an asterisk at the end requires the Issue Details to be

filled out; otherwise that field is optional.

Final Report, RepairIT Shop Repair Manager NativeScript App

8

Required as part of the repair order are photographs to be taken of the item being repaired. The

number and caption of photos are custom per company. In addition to the number of required photos,

there is the option to take any number of additional photos.

Each photo will be taken in turn, and the camera plugin is fired when the highlighted button is tapped.

Once a photo is taken, a thumbnail of that will be displayed. Tapping a photo that has already been

populated will allow the employee to retake the photo.

Final Report, RepairIT Shop Repair Manager NativeScript App

9

The form can only be submitted when all required fields (designated with an asterisk) are populated,

including the required photos.

Canceling will return the employee to the main screen.

When Submitted, a summary of the information will be displayed. Here, the customer can read over the

information and either Accept or Cancel. Canceling will return the employee and customer to the form

where information can be updated.

Acceptance will cause the form data, including photo information, to be pushed into an Order object

which is in turn stored in the Couchbase Lite database.

Once the first order is stored, access to “Pending Orders”, “Active Orders”, and “Completed Orders” will

be made available.

Final Report, RepairIT Shop Repair Manager NativeScript App

10

Order Management and Uploading

A “Pending Order” is any order that has not been “uploaded”. Initial design of the app uses email as the

upload method, sending details to the company bookkeeper. Any order that has been “uploaded” but is

still active (hasn’t been completed with the product delivered to the customer) is considered “Active”,

and is available via the appropriate button.

When there are Pending Orders (orders that haven’t been uploaded), notification will be sent to the

phone letting the employee know. This notification will be resent whenever the app is opened while

there are Pending Orders.

Final Report, RepairIT Shop Repair Manager NativeScript App

11

Pending Orders are also available under the Active Orders page, and are designated with an upload icon

if they have been uploaded.

Currently the listing of orders are by Order ID (the Associate ID plus an incrementing number that is

stored in app settings), the type of repair, the date the repair order was submitted, and a thumbnail of

the first image taken.

If there are no Pending Orders (or Active Orders, or Completed Orders), text stating this will be

displayed when the appropriate page is opened.

Tapping on an order will open an order summary page.

Final Report, RepairIT Shop Repair Manager NativeScript App

12

In the Order Summary page, the options to Upload and Close are available, along with appropriate flags

that can be edited. For instance, if the order needs to be shipped offsite, then when the order is

shipped the order can be opened and the “Shipped Offsite” flag set to true. This will not only record that

the order has been shipped, but it will also capture the date the flag was set.

Likewise, if an order was made without payment, and then the customer pays,

While initially built for a single specific custom, the app is designed to be able to be used by any

company with similar needs.

Final Report, RepairIT Shop Repair Manager NativeScript App

13

Uploading an order fires the device’s email application and populates an email with all the order details,

including attachments of each photo taken.

The email address that the details will be sent to are specified in the customer JSON-server data.

Final Report, RepairIT Shop Repair Manager NativeScript App

14

Implementation Challenges

The first challenge was determining exactly which data was required per customer, and how to

store and access that data while the app is running. I used application settings as much as

possible, but there are some pieces of data (the list of store locations and repair types) that had

to be stored in Couchbase.

The largest challenge so far was with image handling. Initially, I had wanted to use Base64

encoding to convert the images into strings so they could be stored directly in the Couchbase

Lite database. Unfortunately, this proved impossible (at least with the information I was able to

find on the internet, the NativeScript documentation, and the constraints of time). In the end, I

had to satisfy myself by storing the images assets within the app itself and then storing and

calling the paths of these images in Couchbase. This proved sufficient as the images from the

app can be added into an email as attachments.

Once a server is available where I can upload data directly, I will either have to revisit the

Base64 option or simply upload the image assets during the upload process.

Anticipated Future Enhancements

First and foremost will be the integration of a full back-end server where order details can be

literally uploaded and stored. This should become available after the next Coursera course on

NodeJS, MongoDB, etc.

Since current uploading is done through email (which has its own online/offline handling), I did

not include network detection in the initial build of RepairIT. This, however, will be included in

a future release. Certain functions, such as upload and even app initialization, will only be

available when the device is online.

Currently the app is designed for a single employee’s use; however, in many cases a single

device may be used by multiple employees (for instance, customers who use Square as their

payment/register system may wish to add RepairIT to the same device).

Currently, the Settings page only includes a button to clear application and Couchbase data

(used in development). When released, this page will instead allow an employee to sign out,

and then, if no current employee is signed in, when the app is opened an employee sign in page

will be fired. From here, employees can choose themselves from a list of initialized employees,

or create a new employee profile. This is where the optional password entered during

employee initialization can come into play, if particular employees wish to protect their

profiles.

Final Report, RepairIT Shop Repair Manager NativeScript App

15

Finally, company information will be listed in the Information page.

Conclusions

This was a challenging but fulfilling project to work on. I learned a lot about NativeScript and

how to integrate a variety of plugins (Couchbase Lite, the camera, email, and local notifications

in particular), as well as gaining a further handle on Angular.

References

• NativeScript website: https://docs.nativescript.org/

• NativeScript Plugin Marketplace: https://market.nativescript.org/

• Coursera NativeScript course: https://www.coursera.org/learn/nativescript/

• Couchbase Blog (specifically, a post about storing images as Base64 strings, although the

information provided appears to be out of date as it would not work in my

implementation): https://blog.couchbase.com/save-captured-images-nativescript-

angular-application-couchbase/

• My JSON Server: a mock JSON-server where JSON data stored in GitHub can be read by

applications, used for my Customer JSON data: https://my-json-server.typicode.com/

https://docs.nativescript.org/
https://market.nativescript.org/
https://www.coursera.org/learn/nativescript/
https://blog.couchbase.com/save-captured-images-nativescript-angular-application-couchbase/
https://blog.couchbase.com/save-captured-images-nativescript-angular-application-couchbase/
https://my-json-server.typicode.com/

